Time course of inner ear degeneration and deafness in mice lacking the Kir4.1 potassium channel subunit.
نویسندگان
چکیده
The Kir4.1 gene (KCNJ10) encodes an inwardly rectifying K(+) channel subunit abundantly expressed in the CNS. Its expression in the mammalian inner ear has been suggested but its function in vivo in the inner ear is unknown. Because diverse human hereditary deafness syndromes are associated with mutations in K(+) channels, we examined auditory function and inner ear structure in mice with a genetically inactivated Kir4.1 K(+) channel subunit. Startle response experiments suggest that Kir4.1-/- mice are profoundly deaf, whereas Kir4.1+/- mice react like wild-type mice to acoustic stimuli. In Kir4.1-/- mice, the Reissner membrane is collapsed, the tectorial membrane is swollen, and type I hair cells and spiral ganglion neurons as well as their central processes degenerate over the first postnatal weeks. In the vestibular ganglia, neuronal cell death with apoptotic features is also observed. Immunostaining reveals that Kir4.1 is strongly expressed in stria vascularis of wild-type but not Kir4.1-/- mice. Within the spiral ganglion, Kir4.1 labeling was detected on satellite cells surrounding spiral ganglion neurons and axons. We conclude that Kir4.1 is crucial for normal development of the cochlea and hearing, via two distinct aspects of extracellular K(+) homeostasis: (1). in stria vascularis, Kir4.1 helps to generate the cochlear endolymph; and (2). in spiral and vestibular ganglia, Kir4.1 in surrounding glial cells helps to support the spiral and vestibular ganglion neurons and their projecting axons.
منابع مشابه
Targeted point mutagenesis of mouse Kcnq1: phenotypic analysis of mice with point mutations that cause Romano-Ward syndrome in humans.
Inherited long QT syndrome is most frequently associated with mutations in KCNQ1, which encodes the primary subunit of a potassium channel. Patients with mutations in KCNQ1 may show only the cardiac defect (Romano-Ward syndrome or RWS) or may also have severe deafness (Jervell and Lange-Nielsen syndrome or JLNS). Targeted disruption of mouse Kcnq1 models JLNS in that mice are deaf and show abno...
متن کاملGenetic inactivation of an inwardly rectifying potassium channel (Kir4.1 subunit) in mice: phenotypic impact in retina.
The inwardly rectifying potassium channel Kir4.1 has been suggested to underlie the principal K(+) conductance of mammalian Müller cells and to participate in the generation of field potentials and regulation of extracellular K(+) in the retina. To further assess the role of Kir4.1 in the retina, we generated a mouse line with targeted disruption of the Kir4.1 gene (Kir4.1 -/-). Müller cells fr...
متن کاملKir4.1 potassium channel subunit is crucial for oligodendrocyte development and in vivo myelination.
To understand the cellular and in vivo functions of specific K(+) channels in glia, we have studied mice with a null mutation in the weakly inwardly rectifying K(+) channel subunit Kir4.1. Kir4.1-/- mice display marked motor impairment, and the cellular basis is hypomyelination in the spinal cord, accompanied by severe spongiform vacuolation, axonal swellings, and degeneration. Immunostaining i...
متن کاملO3: Pharmacological Modulation of Thalamic KCNQ-Potassium Channels: Insight from Knock-out Mice
The channels belonging to the KCNQ gene family consist of 5 different subtypes, which assemble as pentameric channels. The KCNQ2-5 subunits are highly expressed in the ventrobasal thalamus (VB) where they function primarily as KCNQ2/3 heteromers. They underlie an outward potassium (K+)-current, called M-current (IM), which provides a hyperpolarizing drive, thus regulating neuronal excitability....
متن کاملLocalization of glial aquaporin-4 and Kir4.1 in the light-injured murine retina.
Excessive light causes damage to photoreceptor and pigment epithelial cells, and a local edema in the outer retina. Since Müller glial cells normally mediate the osmohomeostasis in the inner retina (mainly via channel-mediated transport of potassium and water), we determined whether retinal light injury causes an alteration in the retinal localization of glial water (aquaporin-4) and potassium ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Hearing research
دوره 177 1-2 شماره
صفحات -
تاریخ انتشار 2003